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Figure 1. Left image: the robot dodged the obstacle through a series of operation including event accumulation, denosing, obstacle tracking,
trajectory prediction, and avoidance. Top right image: robot perspective of the predicted trajectory of the dynamic obstacle in event frame.

Bottom right image: robot perspective of the environment.

Abstract

Recent development in the robotics community enabled
legged robots to maneuver agilely in complex environ-
ments. However, having these dynamic systems to avoid
fast-moving obstacles in daily living scenarios is still a
remaining challenge that limits deployment in real-world
applications. Especially, although accurate detection of
highly dynamic obstacles under dynamic robot motions is
critical for successful obstacle avoidance, this problem is
complex and challenging due to motion blur and the high
latency of traditional image sensors. More recently, event
cameras have shown great potential in alleviating relevant
issues. In this paper, we propose a dynamic obstacle avoid-
ance framework that consists of dynamic obstacle detection
and trajectory prediction algorithms without using other
sensors, such as depth cameras. Firstly, we present an ac-
curate dynamic obstacle detection and tracking algorithm
based on threshold event data. We then utilize Random

sample consensus (RANSAC) to track and predict the tra-
Jjectory of the obstacle positions in 2D pixel coordinates. Fi-
nally, we introduce our avoidance framework that operates
with predicted 2D obstacle positions. We perform extensive
real-world experiments to validate our avoidance frame-
work which performs 61.9% of obstacle avoidance success
rate of a kicked ball. Our code and video are publicly
available at: https://github.com/DARoSLab/
DynamicObjectsAvoidance.

1. Introduction

Technological advancements in artificial intelligence,
robotics, computer vision, and computation hardware have
facilitated research in safety-ensure robot navigation by
avoiding obstacles based on perception [7,17,18,20]. How-
ever, recognizing highly dynamic obstacles (e.g., high-
speed car, kicked ball) and avoiding them with high pre-
cision is still challenging by utilizing standard cameras as
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they internally possess an average latency of tens of mil-
liseconds. This may not be fast enough to avoid the high-
speed obstacle for a short time interval. Moreover, such
obstacles may arouse motion blur which raises the bars for
successful and robust detection.

Recently, the event camera [10] [6], known as the neu-
romorphic camera, was introduced with the potential to
solve such issues. Unlike traditional cameras that capture
a whole image by using a shutter, an event camera reports
local changes in brightness for each pixel independently and
asynchronously. By capturing independent local events, un-
like the traditional frame-based cameras, event cameras pro-
vide benefits such as high dynamic range, low latency, low
power consumption, and improved motion blur [12]. Here,
we exploit the event-based neuromorphic camera to distin-
guish between dynamic and static obstacles and utilize the
low-latency feature of the event camera to achieve state-of-
the-art fast-moving obstacle avoidance for our quadruped
system.

Despite the advantages of event cameras, the data ob-
tained from event cameras usually contains more noise and
has a relatively low resolution (sparse) compared to dense
pixel data obtained from frame-based cameras. In addition,
event data is camera motion dependent which means the
edges parallel to the motion will not generate events be-
cause the events are triggered by the brightness change from
the relative motion of the camera. Furthermore, event cam-
eras can only capture the relative changes in brightness. In
other words, event cameras do not store any visual detail
such as color and texture. Owing to the distinct sensing
mechanisms of RGB and event cameras, RGB image-based
obstacle avoidance algorithm cannot be directly applied to
event data.

Here, we divide the dynamic obstacle detection algo-
rithm into two situations to fully take advantage of the event
camera and reflect their sensing mechanisms. (1) Static
robot motion: dynamic obstacle detection is relatively easy
under static robot motion. The motion-dependent sensing
mechanism of the event camera naturally only captures the
event data corresponding to dynamic obstacles. Therefore,
the background is automatically filtered out. (2) Dynamic
robot motion: we will conduct further research for obstacle
detection when robot is moving in the future.

In short, we present a framework to detect and track dy-
namic obstacles. The obstacle trajectory is computed and
predicted based on tracked obstacle positions. The obsta-
cle avoidance mechanism is proposed based on 2D obstacle
position without using any additional sensors (e.g., depth
camera) to provide the 3D location of dynamic obstacles.
Our contributions are summarized as follows:

* We propose an event-based dynamic obstacle avoid-
ance framework to detect and avoid dynamic obstacles

without using any additional sensors such as a depth
camera.

* We set experiments with a real-world quadruped robot
to validate our algorithm and show experimental re-
sults indicating the effectiveness of our proposed
method.

2. Related Works

Vision-based obstacle avoidance is a challenging prob-
lem that has been studied extensively for a relatively long
time period. We sort the well-established works in this sec-
tion. The obstacle avoidance problem can be divided into
several processes, including dynamic obstacle detection and
tracking, trajectory prediction, and obstacle avoidance. In
this section, we divide previous works into two categories:
RGB camera-based methods and event camera-based meth-
ods.

2.1. RGB-based Methods

Viet et al. [23] utilized an RGB-based method to tackle
the problem of obstacle avoidance by calculating a lookup
table. Although their method enables the robot to suc-
cessfully navigate in a simple environment, it is not gen-
erally applicable as it requires an additional calculation of
the lookup table in every new environment and it will fail
in complex environments containing high-texture grounds.
Singh et al. [ 19] proposed a machine learning-based method
to detect predefined objects and define them as obstacles.
However, this limits the categories of the obstacle to the
training dataset. Su et al. [22] estimated the position, ve-
locity, and orientation of the quadrotor using an Unscented
Kalman Filter (UKF) based loosely coupled visual-inertial-
fusion module. The visual measurements are obtained from
an optical flow-based velocity estimator that utilizes mea-
surements from a downward-facing camera and a sonar.
Then a ball with LEDs is detected and tracked by applying
a simple intensity threshold.

These methods are limited to slow-moving obstacles
because they cannot respond to highly dynamic obstacles
timely due to the low frame rate of conventional RGB cam-
eras. Besides, the highly dynamic objects may also cause
image blur which further increases the failure ratio of ob-
ject detection and tracking.

2.2. Event-based Methods

To mitigate the limitation of the standard camera, Del-
bruck et al. [2] [3] utilized the event camera to build a fast
self-calibrating goalie with a high update rate and low la-
tency at low CPU load.

Neural network-based methods are also investigated to
solve this problem. El Shair et al. [4] presented a hybrid ob-
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Figure 2. The overview of our detection, tracking, trajectory prediction, and avoidance system. The circles are the locations of the dynamic
obstacle. The redder the circle, the closer it is to the current time. The array is the predicted trajectory direction.

ject detection and tracking approach that uses both frame-
based camera data and event-based camera data. They first
developed a learning-based method to classify from the
frame camera data. Then, event masks are extracted from
the event stream guided by the frame data to perform inter-
frame tracking. Jiang et al. [9] fused an offline-trained de-
tector and online-trained tracker to complement each other
to provide an accurate object-tracking frame work. Sanket
et al. [16] validated their event-based moving object seg-
mentation and avoidance algorithm on a quadrotor by us-
ing shallow neural networks. They trained a neural network
to deblur the event frames and then passed the frames into
another network that performs both segmentation and opti-
cal flow of independently moving dynamic objects. They
further developed a control policy based on the estimation
from the network. Ramesh et al. [13] [14] presented an ob-
ject tracking method using a local sliding window technique
for reliable tracking. Objects are initially detected using
a global sliding window to find regions of interest (ROIs)
which is only used during the initialization of an object or
when the tracking fails to enable real-time performance. Fi-
nally, overlap success and center location error metrics were
used for quantitative evaluation on a short indoor data se-
quence.

However, the neural network-based detecting and track-
ing result are usually time-consuming. For instance, the
proposed resulting sensing latency was 60 ms [16]. Ap-
proaches that utilize the event data structure have been ex-
plored. To better exploit the topological structure, [1] [24]
interpret the event cloud in the form of space-time graphs.
In particular, Bi et al. showed that such compact graph
representation requires less computation and memory than
conventional Convolutional neural networks (CNNs) while
achieving superior results to the state-of-the-art in various
datasets. Zhou et al. [24] proposed a space-time event
graph representation to jointly optimized event-based multi-
motion segmentation and motion model fitting. An energy
function is minimized to calculate the fitting motion model.
Falanga et al. [5] reduced the latency to 3.5 ms by exploit-
ing the temporal information of events to distinguish dy-

namic and static objects. They demonstrated the effective-
ness of their moving obstacle avoidance algorithm also on
a quadrotor. Mondal et al. [12] used graph-spectral cluster-
ing to detect moving objects from event data, then used sil-
houette analysis to automatically determine the number of
moving objects in the data. Mitrokhin et al. [| |] proposed
a motion compensation model that enables the detection of
objects in a scene by finding inconsistencies in the resulting
model and then tracking them using a Kalman filter. They
tested their approach on a dataset collected on a moving
platform comprising several sequences of varying lighting
conditions. The objects were labeled at the time instances
of the captured RGB frames. They evaluated their tracking
performance based on a success rate of the percentage of
objects detected with at least 50% overlaps.

Although the above methods can achieve dynamic obsta-
cle detection within milliseconds, they still need to estimate
the robot’s ego-motion. In dynamic environments, using
event data to estimate the poses of fast-moving robots is a
very challenging problem.

3. Methodology

The overall pipeline of our framework is illustrated in
Fig. 2. Our cascaded framework consists of multiple steps:
event data accumulation, data denoising, obstacle detection
and tracking, trajectory prediction, and robot control. We
first accumulate the sparse events to support obstacle de-
tection in the next few steps. We then implement an event
image denoising algorithm to filter out background noise.
Then, the dynamic obstacle detection algorithm is intro-
duced to segment dynamic objects. Based on the sequence
of dynamic obstacle positions, we calculate the obstacle di-
rection and predict its future trajectory. The trajectory pre-
diction is converted to y—axis velocity commands which
are provided to the robot to avoid the dynamic obstacle.

The rest of this paper is organized as follows: Section 3.1
presents the event data processing. Then Section 3.3 dis-
cusses object detection and tracking methods used in this
framework. In Section 3.4, we present the control strategy



Algorithm 1 Obstacle detection, prediction, and avoidance
Input: Event data
Output: Control command

: position = 0,cnt =0
: for e in events do
Continue if event is not supported by adjacent events
position.x += e.x
position.y += e.y
ent +=1
end for
: position.x /= cnt
. position.y /= ent
. Push position in a queue
. if position_queue.size() > 20 then
Run RANSAC to find fitting line
: end if
. Predict obstacle position by extending the line
: Calculate avoidance command
: return Command
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of robot avoidance.

3.1. Event Capture

An event e; = (u;,t;,p;) is triggered by the event cam-
era at the position u; = (x;, y;) at time ¢; when the bright-
ness change is larger/smaller than a given threshold +H.
The polarity p; describes the sign of the change. Due to
the sparsity of the events, we capture the events by accu-
mulating a stream of events in a fixed time window At of a
few milliseconds. Specifically, we accumulated the events
of At in the range of 2000us to 8000us while testing dif-
ferent detection algorithms. We then obtain a set of events
E = {e;}},! for detecting the obstacle and run obstacle
detection when the accumulated number of events within
a time window is larger than a threshold (set to 50 in the
experiments). The intensity threshold is set to keep events
that are triggered within 2 milliseconds (see Fig. 3). Under
the assumption that triggered events should be close to each
other, a background noise filter is then applied to only keep
events that are supported by adjacent events.

3.2. Obstacle Detection

Obstacle detection can be divided into two situations de-
pending on whether the robot is in static motion or dynamic
motion.

Owing to the motion-dependent sensing mechanism of
an event camera, dynamic obstacle detection is relatively
simple in static situations. We can segment the foreground
as the obstacle by averaging the previously filtered event
data. Specifically, we utilize the time surface map as a
representation of event data to segment the dynamic obsta-
cles. A time surface is a 2D map where each pixel stores
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Figure 3. Left: output of an event camera when viewing a rotat-
ing dot. Right: Time- surface map at a time t, which essentially
measures how far in time (with respect to t) the last event spiked
at each pixel x = (u, v). The brighter the color, the more recently
the event was generated. Figure adapted from [25].

the timestamp of the last spiked event (Shown in Figure X),
then a time surface image can be generated where each pixel
stores a grayscale value that decays with respect to the cor-
responding timestamp. The segmented detection results are
shown in Fig. 1 and Fig. 6.

3.3. Obstacle Trajectory Prediction

Under the assumption that the legged robot and the ob-
stacle move on the ground, we can estimate the trajectory
without the depth camera. This will guarantee better per-
formance because using a depth camera will sacrifice the
low latency feature of the event camera and the motion blur
of the depth camera will decrease the accuracy of the obsta-
cle detection performance. To achieve collision-free obsta-
cle avoidance, we only need to calculate and predict a 2D
trajectory on the pixel coordinate. And if the dynamic ob-
stacle is predicted to collide with the right side of the robot,
the robot should move to the left side and vice versa.

A sequence positions of detected dynamic obstacle are
utilized to track the trajectory and predict its future posi-
tion. For obstacle trajectory calculation and prediction, we
assume the speed of dynamic obstacles is high, so the trajec-
tory should be a line. Under this assumption, the straight-
forward way is to predict the trajectory based on obstacle’s
previous position and current position. However, the po-
sition is updated in a high rate with a large noise, so the
change of two adjacent positions cannot represent the di-
rection of the trajectory.

To solve this issue, we utilize a Random sample con-
sensus (RANSAC) algorithm to track the trajectory of the
moving obstacles. Specifically, we store a sequence of po-
sitions of detected obstacles and use RANSAC to filter out
outliers and compute the trajectory. The trajectory is shown
in Fig. 1 and Fig. 6.



Figure 5. System configuration of the Unitree Gol robot and the
event camera. The Intel RealSense Depth Camera D455 was only
used to visualize the robot-perspective viewpoint and not used for
the obstacle avoidance framework.

3.4. Avoidance Behavior Control

The trajectory prediction output from the previous step
is converted to a velocity command for the robot. Based
on the prediction, we first select the action to avoid the
dynamic obstacle among a predefined finite set of actions
A = {left,right, steady}. For example, when the pre-

diction of the obstacle trajectory lies on the left side of the
robot as shown in Fig 1, we command the robot to move
right and vice versa. Specifically, the robot is commanded
to move in 0.7m/s for 1s along the coronal plane (side-
ways) unless the steady action is selected. Here, we ignore
the triggered events during the avoidance movement and set
a steady time as 2 s for the robot to stay still after the avoid-
ance command to reduce the chance of detecting events
based on ego-motion. We utilize the Gol robot’s built-in
motion controller developed by Unitree Robotics [15] to
execute the high-level control of the velocity, body height,
orientation, and gait type of the robot.

4. Experimental result

In this section, we provide details on the setup for the
dynamic obstacle avoidance experiment in Section 4.1 and
demonstrate the results in Section 4.2.

4.1. Experiment setup

We tested our dynamic obstacle avoidance framework
using the Gol quadruped robot. The IniVation DVXplorer
Lite event camera is mounted on top of the head of the
robot facing forward. We additionally installed an Intel Re-
alSense Depth Camera D455 on top of the robot for record-
ing purposes. Note that our algorithm does not require any
other information such as depth other than events. The hard-
ware platform including the robot and the cameras are well-
depicted in Fig. 5.

We created an experimental environment as shown in
Fig. 4 to have the quadruped robot avoid a soccer ball kicked
by one of the researchers. In each trial of the experiment,
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Robot successfully avoids the obstacle coming from the right
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Figure 6. Top row: the robot dodged the obstacle coming towards its right side. Middle row: the robot dodged the obstacle coming towards
its left side. Bottom row: two failure cases where the algorithm didn’t make the right prediction due to noise.

Table 1. Obstacle avoidance experiment trials.

Direction 1 2 3 4 S5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Right A2 A S A (A S A S 2 A - v /-
Left o X X X vV vV X X v/ vV O X X vV oXx /S - X X vV /O X
Obstacle direction Detection Avoidance* 4.2. Results

Right 21/21 16/21 In order to quantify the performance of our obstacle
Left 21/21 10/21 avoidance algorithm, we count the number of successes of

* Among the 16 & 10 success avoidance when the obstacle was approach-
ing to the Right $ Left side of the robot, there are 4 & 1 times that the robot
did not react to the approaching ball which is predicted not to collide with
the robot.

Table 2. Detection and avoidance success rate.

the kicker sat on a chair and kicked the ball near the robot.
The kicker minimized movement while kicking the ball to
prevent the event camera to capture the events generated by
the kicker. The robot was re-positioned to the initial posi-
tion after each trial.

avoidance and report the success rate. If the robot fails to
avoid the ball and collide, we count the trial as a failure
which is similar to counting the number of collisions, one
of the commonly used metrics in navigation [17,21].

In total, 21 kicks were aimed toward the right side (robot
perspective) of the robot and another 21 kicks were aimed
toward the left side. We show the obstacle avoidance se-
quence in Table. 1. Our dynamic obstacle avoidance algo-
rithm enabled the quadruped robot to avoid the approaching
ball 16 out of 21 trials on the right side and 10 out of 21 tri-
als on the other side as shown in 4.

Out of 42 total kicks, the robot has achieved 100% de-
tection rate and it successfully dodged the moving ball 26



times. We have visualized some of the success and fail-
ure cases on Fig. 6. Due to the high responsiveness of
event cameras, our algorithm is able to accurately detect the
fast moving obstacle throughout the experiment. However,
event cameras also suffer from noise in the environment.
Failure cases are all due to the noise being picked by the
event camera which results in wrong prediction of the tra-
jectory.

5. Conclusion and Discussion

We propose an obstacle avoidance framework for a
quadruped robot to avoid highly-dynamic obstacles based
on events. Our event-based framework enables detection
and trajectory prediction of high-speed obstacles within 2
milliseconds without estimating ego-motion. Nevertheless,
the agility of the legged robot limits the time to avoid it. To
quantify the performance of our algorithm, we measure the
success rate of avoiding a ball kicked by a researcher and
achieved 62% success of avoidance.

6. Future Work

We plan to improve our algorithm’s robustness to noise
in our future work. We expect to implement learning-based
filters to significantly decrease the noise level and conse-
quently improve the success rate of avoidance. We also
plan to implement obstacle detection even when the robot
is in motion. Other researchers have been estimating the
ego-motion to compensate for the event data to segment
the dynamic obstacles [8]. However, this requires accurate
pose estimation, which is extremely challenging with event
data under highly dynamic robot motion in a dynamic envi-
ronment. We will release the limitation of ego-motion esti-
mation by separating the dynamic obstacles based on local
optical flow consistency. We also plan to leverage sparse-
to-fine optical flow algorithms to provide high-speed and
accurate dynamic obstacle detection.

To gain further improvement, we will utilize time surface
images to fully interpret temporal information for future
work. We also plan to advance our algorithm to plan paths
under conditions having multiple approaching dynamic ob-
stacles while navigating.
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